In-depth analysis of the structure and advantages of electronic connectors

这里是标题一h1占位文字


An electrical connector, also known as a circuit connector, is a conductor device that bridges two conductors on a circuit so that current or signals can flow from one conductor to the other. An electronic connector is a motor system that provides a separable interface to connect two sub-electronic systems. Simply put, the components used to complete the electrical connection between circuits or electronic machines are called connectors, or the bridge between the two.

An electronic connector is also often called a circuit connector, electrical connector, a conductor device that bridges two conductors on a circuit so that current or signals can flow from one conductor to the other. It is used in a wide variety of electrical circuits and serves to connect or disconnect currents or signals. This connection may be temporary and easy to plug at any time, or may be a permanent junction between electrical equipment or wires.

Electronic connectors are devices that transmit electronic signals (analog signals or digital signals), can provide a separate interface to connect two sub-electronic systems, is used to complete the electrical connection between circuits or electronic machines and other components of the electrical connection. Such as: power plugs / sockets, IC feet, telephone line plugs, etc. are. Widely used in the electronics industry.

Electronic connector is a motor system, which can provide a separable interface to connect two sub-electronic systems, simply put, the components used to complete the electrical connection between the circuit or electronic equipment, etc. are called connectors, that is, the bridge between the two.

Barrier type electronic connectors

Electronic can be used as the electrical/electronic transmission connection between circuits, components, and systems, so that power, signal, and current can flow stably and reliably, and facilitate product assembly, maintenance, and replacement.

Mainly contains three major aspects.

1. mechanical testing;

2. Environmental testing;

3. Electrical testing.

1, according to the soldering method is divided into: DIP class (eg: PCI 120P), SMT class (eg: MINI PCI EXPRESS)

2, according to the appearance can be divided into: external type and internal type

(1) External type are

I/O: D-subminiature connector (also known as D-SUB connector), USB, 1394, DDR, VGA, SCSI, etc.

CARD: SD, SIM, NEW CARD, etc.

JACK: RJ11, RJ45, etc. RF

Power supply

Others: SCSI, DVI, etc.

(2)Internal type are

Board-to-board

Wire to board

Wire-to-wire

Flexible Printed Circuit Board (FPC): ZIF

HDD:BOX,PIN-Header&Socket

Edge Card:AGP,PCI

CPC Socket:478,SLOT-1,SLOT-2

Memory:DIM,SO-DIM

Electronic Connectors

Others:MINI PCI

The choice of materials is based on processing formability, product applicability and strength properties of a comprehensive consideration; electronic connector cost by the price of materials, processing difficulties and production efficiency and differences; electronic connector materials mainly contain insulator materials (plastic materials), conductor materials (phosphor bronze, brass); electronic connectors commonly used engineering plastic materials are: LCP, NYLON, PBT.

LCP

Has a small coefficient of linear expansion, injection molding shrinkage rate is low and very outstanding strength and modulus of elasticity and excellent heat resistance, with high load deflection temperature, some can be as high as 340 degrees above, LCP also has chemical resistance and excellent airtightness, so the general connector especially the need for SMT are preferred LCP material, eg: MINI PCI EXPRESS; DDR.

NYLON

Lower cost, high tensile strength, outstanding wear resistance and self-slip, good fluidity, conducive to thin-walled molding, but shrinkage is serious, easy to produce hairy, molding before baking strictly to prevent hydrolysis, general connectors, especially DIP most of the NYLON material, eg: PCI 120P; PCI EXPRESS.

PBT

Plug-in electronic connectors

Low cost, high strength, friction resistance, but poor molding, shrinkage is serious, due to the melting temperature is low, over the wave soldering will produce plastic melting phenomenon.

Development trend

1. Miniaturization

Small volume, light weight, small Pitch, reduced height, high density/high Pin number.

2.High frequency signal/transmission

Low contact group resistance, low effect, good signal masking effect, signal delay, Crosstalk .... etc.

3.Automated operation

Reduced workstation process, Auto Pick & Place, Type, product accuracy improvement, maintenance method.

4.User-friendly interface

User-friendly operation, anti-dumbing design.

5.Low cost of use

Standardization of products, flexible product and process design, compressed delivery time.

*Note: Please fill in the information accurately and keep the communication unblocked. We will contact you as soon as possible

Submit

Related news


How RF Coaxial Cable Assemblies Enhance Signal Quality: A Comprehensive Guide

How RF Coaxial Cable Assemblies Enhance Signal Quality Table of Contents 1. Introduction to RF Coaxial Cable Assemblies 2. What is Coaxial Cable? 3. Why Signal Quality Matters 4. Components of RF Coaxial Cables 5. How RF Coaxial Cable Assemblies Work 6. Benefits of Using RF Coaxial Cable Assemblies 7. Applications of RF Coaxial Cable Assemblies 8. Installation and


Understanding RF Coaxial Loads: Essential Insights for Professionals

RF Coaxial Load is a crucial component in various applications within the electrical and electronics industry, especially concerning coaxial connectors. These loads are designed to absorb RF (radio frequency) energy, ensuring that signals are transmitted effectively without reflections or losses. Understanding RF coaxial loads is essential for professionals working with RF systems, as they play a


Understanding Impedance and Its Impact on SMA Coaxial Cable Connectors: A Comprehensive Guide

Understanding Impedance and Its Impact on SMA Coaxial Cable Connectors Table of Contents 1. Introduction to Impedance 2. What is SMA Coaxial Cable? 3. The Importance of Impedance in Electrical Engineering 4. How Impedance Affects SMA Coaxial Cable Connectors 4.1. Signal Integrity and Loss 4.2. Reflections and Standing Waves 5. Impedance Matching Techniques for SMA Connectors 5.1. Using Resistors f


Understanding DIN Coax Connectors: Key to Reliable Electrical Connections

DIN coax connectors are a crucial component in the electrical and electronics industry, particularly in applications requiring reliable signal transmission. These connectors are designed to provide a robust connection for coaxial cables, facilitating effective communication in radio frequency (RF) applications, telecommunications, and video transmission systems. Understanding the technical aspects


The Comprehensive Advantages of Utilizing Coax N Connectors for Your Electrical Projects

The Comprehensive Advantages of Utilizing Coax N Connectors for Your Electrical Projects Introduction to Coax N Connectors In the realm of electrical engineering and telecommunications, **connectors** play a pivotal role in ensuring that devices communicate effectively. Among the myriad of connectors available, **coax N connectors** stand out due to their robust design and superior performance. Th


Understanding SMA Coax Connectors: A Comprehensive Guide for Electric and Electrical Professionals

SMA coax connectors are a vital component in the electric and electrical industry, particularly in applications requiring high-frequency signal transmissions. These connectors are characterized by their small size and ability to maintain performance at microwave frequencies, making them a popular choice for various electronic devices. One of the primary features of SMA connectors is their screw-ty